医疗污水处理工艺有哪些
虽然医院废水的大体情况是差不多的,但是处理工艺还是要根据处理目标而定:(一)传统工艺——活性污泥法(实例)
1 格栅井
功 能:放置格栅。污水中含有大量较大的悬浮物和漂浮物,格栅的作用是截留并去除上述物质,对水泵和后续处理单元起保护作用。
设计思路:格栅井位于提升井的正上方,采用钢砼结构与调节池合建一体,格栅井的上方建有格栅间一座,防止栅渣传播病毒,为协调周围环境,可对格栅井外面作美化处理。操作人员可定期对栅渣消毒、清理、外运,作为医疗垃圾焚烧掉。为减轻操作人员的劳动强度,和改善工作环境,保证污水除渣的效果,格栅井内设置1台机械格栅和1台提篮格栅。机械格栅和提篮格栅采用不锈钢材料制成,具有耐腐蚀,机械格栅自动从污水中清理栅渣,管理方便,故障少、维修率低。
主要设备:机械格栅,栅条间距5mm。
提篮格栅,φ500mm。
结构尺寸: 4.2m×2.0m×3.0m。
2、提升井
功 能:提高水位,提高调节池的利用率,减少土地开挖量,较少投资。
设计思路:提升井采用地下封闭钢砼结构,与其它处理单元合建在一起,节省基建投资,池顶上覆土,为检查维修方便,在提升井的边角处设有检查孔,可定期对提升井进行维护。
结构类型:地下式钢筋混凝土结构。
结构尺寸:4.0×3.0×4.5m
主要设备:一级提升泵 100WQ85-10-4.0
Q=85m3/h,H=10m P=4.0Kw
数 量 2台,1用1备
3、 调节池
功 能:调节污水水质水量。
设计思路:调节池采用地下封闭钢砼结构,与其它处理单元合建在一起,节省基建投资,池顶上覆土,为检查维修方便,在调节池的边角处设有检查孔,可定期对调节池进行维护;调节池中设有潜水搅拌机,定期搅拌,防止悬浮颗粒沉淀。
结构类型:地下式钢筋混凝土结构。
结构尺寸:9.9×9.3×4.5m
主要设备:二级提升泵 80WQ40-7-2.2
Q=40m3/h,H=7m P=2.2Kw
数 量 2台,1用1备
潜水搅拌机 QJB0.85 P=0.85Kw
数 量 2台
4 、絮凝沉淀池
功 能:用于去除污水中的悬浮污染物,减少了悬浮物对消毒剂的干扰,节省消毒剂的用量,并为余氯在线自动监测提供良好的环境。
设计思路:为减小占地面积,采用竖流式沉淀池,采用地埋式钢筋混凝土结构,与其它处理单元合建在一起,池顶上覆土,为检查维修方便,在絮凝沉淀池的边角处设有检查孔,可定期对调节池进行维护。污泥沉积在泥斗中,通过污泥泵定期经污泥管排入污泥浓缩池中,出水自流入消毒接触池。
水力负荷:1.8m3/m2.h。
结构类型:地埋式钢筋混凝土结构。
结构尺寸:5.0×5.0×4.5m 1座
主要设备:污泥提升泵 50WQ10-10-0.75
Q=10m3/h,H=10m P=0.75Kw
数 量 1台
5 、消毒接触池
功 能:沉淀池出水进入消毒接触池,使污水与消毒剂保持一定的接触停留时间,保证消毒剂有效地杀死水中细菌,出水排放至市政管网。
设计思路:根据《医疗机构水污染物排放标准》(GB18466-2005)要求传染病医院污水接触时间不宜小于1.5小时,综合医院污水接触时间不宜小于1.0小时。北京*****医院是含有传染科的综合医院,所以,接触池的水力停留时间采用1.5小时。采用地埋式钢筋混凝土结构,与其它处理单元合建在一起,节省基建投资,池顶上覆土,为检查维修方便,在接触氧化池的边角处设有检查孔,可定期对调节池进行维护。接触池内设置导流墙,避免短流,在接触池的出口设置余氯自动监测设备,以便及时调节消毒剂的投加量。
停留时间:1.5h
结构尺寸:5.0m×4.5m×4.5m 1座
结构类型:地埋式钢筋混凝土结构。
6 、污泥储池
功 能:收集并储存絮凝沉淀池产生的污泥,定期向池内加入石灰对污泥进行消毒,污泥脱水后,干污泥外运,滤液回流至调节池。
设计思路:采用地埋式钢筋混凝土结构,与其它处理单元合建在一起,节省基建投资,池顶上覆土,为检查维修方便,在污泥储池的边角处设有检查孔,可定期对调节池进行维护。污泥储池中设有潜水搅拌机,以利于污泥加药消毒时进行搅拌。
结构尺寸:4.0m×2.9m×4.5m 1座
结构类型:地下式钢筋混凝土结构。
主要设备:潜水搅拌机 QJB0.85 P=0.85Kw
数 量 2台
7、 值班室
结构尺寸:3.9m×3.0m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
8 、电控室
结构尺寸:3.9m×2.1m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
主要设备:电器控制柜 1套
9 、消毒室
结构尺寸:3.9m×4.2m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
10 、加药室
结构尺寸:3.6m×2.0m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
主要设备:加药装置 *** -J300 4套
11、 储药间
结构尺寸:2.0m×1.2m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
12 、操作间
结构尺寸:7.5m×5.0m×3.0m 1间
设计思路:采用砖混结构,对房屋的外观作美化处理。
主要设备:旋流反应器 XL-1200 1套
离心脱水机 TS-250 1套
消毒供水泵 TQL32-125 1台
改进工艺:
由于现在污水排放标准越来越严格,我们知道医疗污水中氨氮等有机物的含量很高所以在中间主要的生物处理单元做了一些改进,如:
(二)生物接触氧化法;
(三)同步硝化反硝化(SND)生物接触氧化工艺;
(四)膜-生物反应器;
(五)曝气生物滤池工艺。
重点推荐:生物接触氧化处理工艺
《SND型生物接触氧化工艺处理医疗污水》——流隽;《生物接触氧化法在医疗污水处理设施中的应用》
污水处理工艺的确定
污水处理工艺的确定需要考虑以下几点:一、污水处理程度
这是污水处理工艺流程选择的主要依据。污水处理程度原则上取决于污水的水质特征、处理后水的去向和污水所流入水体的自净能力。但是目前,污水处理程度的确定主要依从国家的有关法律制度及技术政策的要求。通常环境管理部门是根据《污水综合排放标准》及相关的行业排放标准来控制污水的排放浓度,一些经济发展水平较高的地区还规定了更为严格的地方排放标准。因此,无论是何种需要处理的污水,也无论是采取何种处理工艺及处理程度,都应以处理系统的出水能够达标为依据和前提。按照法律、法规、政策的要求预防和治理水体环境污染。
二、污水水质
比如生活污水水质通常比较稳定,一般的处理 *** 包括酸化、好氧生物处理、消毒等。而工业废水应根据具体的水质情况进行工艺流程的合理选择。特别需要指出的是,对于采用好氧生物处理工艺处理废水来说,要注意废水的可生化性,通常要求COD/BOD50.3,如不能满足要求,可考虑进行厌氧生物水解酸化,以提高废水的可生化性,或是考虑采用非生物处理的物理或化学 *** 等。
三、当地的自然和社会条件
当地的地形、气候等自然条件也对废水处理流程的选择具有一定影响。如当地气候寒冷,则应采用在采取适当的技术措施后,在低温季节也能够正常运行,并保证取得达标水质的工艺。当地的社会条件如原材料、水资源与电力供应等也是流程选择应当考虑的因素之一。
四、污水的水量
除水质外,污水的水量也是影响因素之一。对于水量、水质变化大的污水,应首先考虑采用抗冲击负荷能力强的工艺,或考虑设立调节池等缓冲设备以尽量减少不利影响。
五、建设及运行费用
考虑建设与运行费用时,应以处理水达到水质标准为前提条件。在此前提下,工程建设及运行费用低的工艺流程应得到重视。此外,减少占地面积也是降低建设费用的重要措施。
总之,污水处理工艺的选择应综合考虑各项因素,进行多种方案的技术、经济比较才能做出合适的选择。
下面分享相关内容的知识扩展:
SBR是什么意思污水处理里面所说的SBR是什么技术
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。它是基于以悬浮生长的微生物在好氧条件下对有机物、氨氮等污染物进行降解的废水生物处理活性污泥工艺。按时序来以间歇曝气方式进行,改变活性污泥的生长环境,是一种被全球广泛认可和使用的废水处理工艺。SBR 工艺的过程是按时序来完成的, 一个操作过程分五个阶段: 进水、 反应、 沉淀、 滗水、 闲置。这五个阶段都是单池运行,当处理污水量较大时,可以进行多池多组的交替运行处理,此时人工操作难以发挥它的优点,需要由高度自动化的控制系统进行管理。
SBR 的运行周期由进水时间、 反应时间、 沉淀时间、 滗水时间、 排泥时间和闲置时间来确定。具体时间根据进水量及进水时间可以进行适当调节。
计算 *** :
沉淀排水时间( Ts D) 一般按2~4h 设计。闲置时间( Tx) 一般按0.5~1h 设计。 设定反应时间为( Tf) 。一个周期所需时间T≥Tf Ts D Tx。
时间分配例子,如:运行周期12h,其中进水2h,曝气4~8h,沉淀2h,排水1h。
SBR工艺优点:
1) 工艺简单,节省费用和场地;
2)理想的推流过程使生化反应推力大效率提高;
3)运行方式灵活,脱硫除氮效率好;
4)这是防止污泥膨胀的更好 *** ;
5)耐冲击负荷,处理能力强。
应用SBR工艺更先进的澳大利亚,先后建成SBR 工艺污水处理厂600 余座,还兴建日处理量21 万吨大型SBR工艺污水处理厂;广州兴丰垃圾卫生填埋厂处理渗透液等采用了普通SBR工艺;国祯环保应用SBR工艺的实时控制技术,去除有机物和脱氮除磷效率高,另外在高氨氮废水脱氮方面有较大突破。
污水处理的步骤是什么?拜托各位了 3Q
污水处理一般来说包含以下三级处理:一级处理是它通过机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、砂石和脂肪、油脂等。二级处理是生物处理,污水中的污染物在微生物的作用下被降解和转化为污泥。三级处理是污水的深度处理,它包括营养物的去除和通过加氯、紫外辐射或臭氧技术对污水进行消毒。可能根据处理的目标和水质的不同,有的污水处理过程并不是包含上述所有过程。 机械处理工段 机械(一级)处理工段包括格栅、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5和SS的典型去除率分别为25%和50%。在生物除磷脱氮型污水处理厂,一般不推荐曝气沉砂池,以避免快速降解有机物的去除;在原污水水质特性不利于除磷脱氮的情况下,初沉的设置与否以及设置方式需要根据水质特注的后续工艺加以仔细分析和考虑,以保证和改善除磷除脱氮等后续工艺的进水水质。 污水生化处理 污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的,其工艺构成多种多样,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化沟法、稳定塘法、土地处理法等多种处理 *** 。日前大多数城市污水处理厂都采用活性污泥法。生物处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀池固液分离,从净化后的污水中除去。 三级处理: 三级处理是对水的深度处理,现在的我国的污水处理厂投入实际应用的并不多。它将经过二级处理的水进行脱氮、脱磷处理,用活性炭吸附法或反渗透法等去除水中的剩余污染物,并用臭氧或氯消毒杀灭细菌和病毒,然后将处理水送入中水道,作为冲洗厕所、喷洒街道、浇灌绿化带、工业用水、防火等水源。 由此可见,污水处理工艺的作用仅仅是通过生物降解转化作用和固液分离,在使污水得到净化的同时将污染物富集到污泥中,包括一级处理工段产生的初沉污泥、二级处理工段产生的剩余活性污泥以及三级处理产生的化学污泥。由于这些污泥含有大量的有机物和病原体,而且极易腐败发臭,很容易造成二次污染,消除污染的任务尚未完成。污泥必须经过一定的减容、减量和稳定化无害化处理井妥善处置。污泥处理处置的成功与否对污水厂有重要的影响,必须重视。如果污泥不进行处理,污泥将不得不随处理后的出水排放,污水厂的净化效果也就会被抵消掉。所以在实际的应用过程中,污水处理过程中的污泥处理也是相当关键的。 !--EndFragment--【污水处理厂工艺流程设计计算】 污水处理厂基本流程
1概述1.1 设计依据
本设计采用的主要规范及标准:
《城市污水处理厂污染物排放标准 (GB18918-2002) 》二级排放标准 《室外排水设计规范》(1997年版) (GBJ 14-87) 《给水排水工程概预算与经济评价手册》
1.2 设计任务书(附后)
2原水水量与水质和处理要求
2.1 原水水量与水质
Q=60000m3/d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2处理要求
污水排放的要求执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水处理工艺的选择
本污水处理厂水质执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准,其污染物的更高允许排放浓度为:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物质为易生物降解的有机污染物,因此常采用二级生物处理的 *** 来进行处理。
二级生物处理的 *** 很多,主要分两类:一类是活性污泥法,主要包括传统活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延时活性污泥法(氧化沟)、AB 工艺、A/O工艺、A 2/O工艺、SBR 工艺等。另一类是生物膜法,主要包括生物滤池、生物转盘、生物接触氧化法等工艺。任何工艺都有其各自的特点和使用条件。
活性污泥法是当前使用比较普遍并且有比较实际的参考数据。在该工艺中微生物在处理单元内以悬浮状态存在,因此与污水充分混合接触,不会产生阻塞,对进水有机物浓度的适应范围较大,一般认为BOD 5在150—400 mg/L之间时,都具有良好的处理效果。但是传统活性污泥处理工艺在处理的多功能性、高效稳定性和经济合理性方面已经难以满足不断提高的要求, 特别是进入90年代以来, 随着水体富营养化的加剧, 我国明确制定了严格的氨氮和硝酸盐氮的排放标准, 从而各种具有除磷、脱氮功能的污水处理工艺:如 A/O工艺、A 2/O工艺、SBR 工艺、氧化沟等污水处理工艺得到了深入的研究、开发和广泛的应用, 成为当今污水处理工艺的主流。
该地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低于30mg/L。在出水的水质中,
不仅对COD 、BOD 5、SS 去除率都有较高的要求, 同时对氮和磷的要求也进一步提高. 结合具体情况在众多的污水处理工艺中选择了具有良好脱氮除磷效果的两种工艺—CASS 工 艺和Carrousuel 氧化沟工艺进行方案技术经济比较。
4污水处理工艺方案比选
4.1 Carrousuel氧化沟工艺(方案一)
氧化沟时二十世纪50年代由荷兰的巴斯维尔开发,后在欧洲、北美迅速推广,80年代中期,我国部分地区也建造了氧化沟污水处理工程。近几年来,处理厂的规模也发展到日处理水量数万立方米的工业废水及城市污水的大、中型污水处理工程。
氧化沟之所以能在近些年来得到较快的发展,在于它管理简便、运行稳定、流程简单、耐冲击负荷、处理效果好等优点,特别是氧化沟具有特殊的水流混合特征,氧化
沟中的曝气装置只设在某几段处,溶解氧浓度较高,理NH 3-N 效果非常好,同时由于存在厌氧、好氧条件,对污水中的磷也有一定的去除率。
氧化沟根据构造和运行方式的不同,目前较多采用的型式有“Carrousel 型氧化沟”、“Orbal 型氧化沟”、“一体化氧化沟”和“交替式氧化沟”等,其中,由于交替式氧化沟要求自动化水平较高,而Orabal 氧化沟因水深较浅,占地面积较大,本报告推选Carrousel 氧化沟作为比选方案之一。
本设计采用的是Carrousel 氧化沟工艺. 其工艺的处理流程图如下图4-1所示: `
图4-1 Carrousel氧化沟工艺流程图
4.1.1污水处理系统的设计与计算
4.1.1.1进水闸门井的设计
进水闸门井单独设定, 为钢筋混凝土结构。设闸门井一座, 闸门的有效面积为1.8m 2, 其具体尺寸为1.2×1.5 m,有效尺寸为1.2 m×1.5 m×4.5 m。设一台矩形闸门。当污水厂正常运行时开启, 当后序构筑物事故检修时, 关闭某一闸门或者全部关闭, 使污水通过超越管流出污水处理厂。
4.1.1.2 中格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.02m,格栅倾角α=60°,建议格栅数为2,一备一用。
Q max sin α0. 652⨯sin 60
=≈68个 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.60m,其渐宽部分的展开角
α1=20(进水渠道内的流速为0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 56==0.28m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为20mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
图4-2 格栅计算示意图
4.1.1.3细格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.006m,格栅倾角α=600,格栅数为2。
Q max 0. 652⨯sin 60
=≈109个 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.6m,其渐宽部分的展开角α1=20
(进水渠道内的流速为0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 22
==0.11m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为6mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
4.1.1.4 曝气沉砂池的设计与计算
本设计采用曝气沉砂池是考虑到为污水的后期处理做好准备。建议设两组沉砂池一备一用。其计算简图如图4-3所示。具体的计算过程如下:
(1)池子总有效容积:设t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流断面积:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池设两格,有效水深为2.00m ,单格的宽度为2.4m 。
(3)池长:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池实际沉砂量:设含砂量为20 m3/106 m3污水,每两天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小时所需空气量:设曝气管浸水深度为2.5 m,查表得单位池长所需空气量为28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
图4-3 曝气沉砂池计算示意图
4.1.1.5 厌氧池的设计与计算
4.1.1.5.1 设计参数
设计流量为60000 m3/d,设计为两座每座的设计流量为30000 m3/d。 水力停留时间:
T =2h 。
污泥浓度:
X =3000mg/L
污泥回流液浓度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 设计计算 (1)厌氧池的容积:
V =QT =30000×2/24=2500 m3
(2)厌氧池的尺寸:
水深取为h =5,则厌氧池的面积:
V 2500A ===500 m2。
h 5
厌氧池直径:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考虑0.3的超高,故池总高为H =h +0. 3=5.3 m。 (3)污泥回流量的计算 回流比计算:
R =
X
=0.42
X R -X
污泥回流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化沟的设计与计算
氧化沟,又被称为循环式曝气池,属于活性污泥法的一种。见图4-4氧化沟计算示3
4.1.1.6.1设计参数
设计流量Q=30000m3/d设计进水水质BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水温T =25℃。
设计出水水质BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥产率系数Y=0.55; 污泥浓度(MLSS )X=4000mg/L;挥发性污泥浓度(MLVSS )X V =2800mg/L; 污泥龄θc =30d; 内源代谢系数K d =0.055. 4.1.1.6.2设计计算
(1)去除BOD
氧化沟出水溶解性BOD 浓度S 。为了保证沉淀池出水BOD 浓度S e ≤30mg/L,必须控制所含溶解性BOD 浓度S 2,因为沉淀池出水中的VSS 也是构成BOD 浓度的一个组成部分。
S=Se -S 1
S 1为沉淀池出水中的VSS 所构成的BOD 浓度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧区容积V 1。好氧区容积计算采用动力学计算 *** 。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧区水力停留时间:t=剩余污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所产生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脱氮
需氧化的氨氮量N 1。氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=进水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脱氮量NR=进水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脱氮所需要的容积V 2
脱硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脱氮所需要的容积:
V 2=
脱氮水力停留时间t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化沟总体积V 及停留时间t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥负荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化沟尺寸:取氧化沟有效水深为5m ,超高为1m ,氧化沟深6m 。
V
=20562/5=4112.4m 2 h
单沟宽10m ,中间隔墙宽0.25m 。则弯道部分的面积为:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直线段部分的面积:
氧化沟面积为A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
单沟直线段长度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
进水管和出水管:污泥回流比R=63.4%,进出水管的流量为:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速为v =1.0m/s。
3
3
则管道过水断面:
A=
管径d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管径850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
实际需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩余污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩余污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124为污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脱氮产氧量:
D 5=2.86×脱氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考虑安全系数1. 2,则AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
标准状态下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃时氧的饱和度,取9.17mg/L;T=25℃;C S(T)25℃时氧的饱和度,取 8.38mg/L;C 溶解氧浓度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝气设备的选择:设两台倒伞形表面曝气机,参数如下: 叶轮直径:4000mm ;叶轮转速:28R/min;浸没深度:1m ; 电机功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的设计与计算
其计算简图如图4-5所示
4.1.1.7.1设计参数
Q max =652 L/s=2347.2 m 3/h;
氧化沟中悬浮固体浓度 X =4000 mg/L;
二沉池底流生物固体浓度 X r =10000 mg/L;
污泥回流比 R=63.4%。
4.1.1.7.2 设计计算
(1) 沉淀部分水面面积 F 根据生物处理段的特性,选取二沉池表面负荷q=0.9m3 /(m2·h), 设两座二次沉淀池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直径 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固体负荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉淀部分的有效水深h 2 设沉淀时间为2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥区的容积V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥区高度h 4
污泥斗高度。设池底的径向坡度为0.05,污泥斗底部直径D 2=1.6m,上部直径D 1=4.0m,倾角为60°,则:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圆锥体高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
竖直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥区的高度h 4=h 4
沉淀池的总高度H 设超高h 1=0.3m,缓冲层高度h 3=0.5m。
则 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接触池的设计与计算
采用隔板式接触反应池。其计算简图如图4-5所示。
水力停留时间:t=30min
12
平均水深:h =2.4m。
隔板间隔:b=1.5m。
池底坡度:3%
排泥管直径:DN=200mm。
4.1.1.8.2设计计算
接触池容积:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面积:
Q 1174==489. 2 m2 h 2. 4
廊道总宽度:隔板数采用10个,则廊道总宽度为B=11×b=11×1.5=16.5m。 接触池长度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水头损失,取0.4m 。 F =
13